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ABSTRACT: KAM theory: it provides the persistence of quasi–periodic motions under a small 

perturbation of an integrable system. KAM theory can be applied under quite general 

assumptions, i.e. a non– degeneracy of the integrable system and a Diophantine condition of 

the frequency of motion. It yields a constructive algorithm to evaluate the strength of the 

perturbation ensuring the existence of invariant tori. Perturbation theory: it provides an 

approximate solution of the equations of motion of a nearly–integrable system. Spin–orbit 

problem: a model composed by a rigid satellite rotating about an internal axis and orbiting 

around a central point–mass planet; a spin– orbit resonance means that the ratio between the 

revolutional and rotational periods is rational. Three–body problem: a system composed by 

three celestial bodies (e.g. Sun–planet–satellite) assumed as point–masses subject to the 

mutual gravitational attraction. The restricted three–body problem assumes that the mass of 

one of the bodies is so small that it can be neglected. 
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1. INTRODUCTION 

Perturbation theory aims to find an approximate solution of nearly–integrable systems, 

namely systems which are composed by an integrable part and by a small perturbation. 

The key point of perturbation theory is the construction of a suitable canonical 

transformation which removes the perturbation to higher orders. A typical example of a 

nearly–integrable system is provided by a two–body model perturbed by the gravitational 

influence of a third body whose mass is much smaller than the mass of the central body. 

Indeed, the solution of the three–body problem greatly stimulated the development of 

perturbation theories. The solar system dynamics has always been a testing ground for 

such theories, whose applications range from the computation of the ephemerides of 

natural bodies to the development of the trajectories of artificial satellites. 

The two–body problem can be solved by means of Kepler’s laws, according to which for 

negative energies the point–mass planets move on ellipses with the Sun located in one of 

the two foci. The dynamics becomes extremely complicated when adding the gravitational 

influence of another body. Indeed Poincar´e showed ([12]) that the three–body problem 

does not admit a sufficient number of prime integrals which allow integrating the problem. 

Nevertheless a special attention deserves the so–called restricted three–body problem, 

namely when the mass of one of the three bodies is so small that its influence on the others 

can be neglected. In this case one can assume that the primaries move on Keplerian ellipses 

around their common bary center; if the mass of one of the primaries is much larger than 

the other (as it is the case in any Sun–planet sample), the motion of the minor body is 

governed by nearly–integrable equations, where the integrable part represents the 

interaction with the major body, while the perturbation is due to the influence of the other 

primary. A typical example is provided by the motion of an asteroid under the 

gravitational attraction of the Sun and Jupiter. The small body may be taken not to 

influence the motion of the primaries, which are assumed to move on elliptic trajectories. 

The dynamics of the asteroid is essentially driven by the Sun and perturbed by Jupiter, 

since the Jupiter–Sun mass–ratio amounts to about 10−3. The solution of this kind of 

problem stimulated the work of the scientists, especially in the XVIII and XIX centuries. 
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Indeed, Lagrange, Laplace, Leverrier, Delaunay, Tisserand and Poincar´e developed 

perturbation theories which are at the basis of the study of the dynamics of celestial 

bodies, from the computation of the ephemerides to the recent advances in flight dynamics. 

For example, on the basis of perturbation theory Delaunay ([8]) developed a theory of the 

Moon, providing very refined ephemerides. Celestial Mechanics greatly motivated the 

advances of perturbation theories as witnessed by the discovery of Neptune: its position 

was theoretically predicted by John Adams and by Jean Urbain Leverrier on the basis of 

perturbative computations; following the suggestion provided by the theoretical 

investigations, Neptune was finally discovered on 23 September 1846 by the astronomer 

Johann Gottfried Galle. 

 
2. CLASSICAL PERTURBATION THEORY 

 
THE CLASSICAL THEORY 

Consider a nearly–integrable Hamiltonian function of the form 

 

 

where  h  and  f are  analytic  functions of      (V open set of Rn) and Tn (Tn is the 

standard n–dimensional torus), while ε > 0 is a small parameter which measures the 

strength of the perturbation. The aim of perturbation theory is to construct a canonical 

transformation, which allows removing the perturbation to higher orders in the perturbing 

parameter. To this end, let us look for a canonical change of variables (i.e., with 

simplistic 

 

 

Jacobian matrix) , such that the Hamiltonian (1) takes the form 

 

where h΄ and f΄ denote the new unperturbed Hamiltonian and the new perturbing 

function. To achieve such result we need to proceed along the following steps: build a 

suitable canonical transformation close to the identity, perform a Taylor series expansion 

in the perturbing parameter, require that the unknown transformation removes  the  

dependence on the angle variables up to second order terms, expand in Fourier series in 

order to get an explicit form of the canonical transformation. 

 

The change of variables is defined by the equations 

 

 

 

Where is an unknown generating function, which is determined so that (1) takes 

the form (2). Decompose the perturbing function as 

where f0 is the average over the angle variables and ˜ f is the remainder function defined 

through  . Define the frequency vector as 
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. 

 
The precession of the perihelion of Mercury 
As an example of the implementation of classical perturbation theory we consider the 

computation of the precession of the perihelion in a (restricted, planar, circular) three–

body model, taking as sample the planet Mercury. The computation requires the 

introduction of Delaunay action–angle variables, the definition of the three–body 

Hamiltonian, the expansion of the perturbing function and the implementation of classical 

perturbation theory. 

 

3. RESONANT PERTURBATION THEORY 

 

The Resonant Theory 

Let us consider a Hamiltonian system with n degrees of freedom of the form 

 

 

and let     be the frequencies of the motion, which we assume to 

satisfy , resonance relations of the form 

 

, 

for suitable rational independent integer vectors m1, ..., m`. A resonant perturbation theory 

can be implemented to eliminate the non–resonant terms. More precisely, the aim is to 

 

construct   a  canonical  transformation  C: such that the transformed 

Hamiltonian takes the form 

 

where h΄ depends only on the resonant angles . To this end, let us first introduce the 

angles as 

  , 

where  the  first angle  variables  are   the   resonant  angles,  while  the  latter  n  − angle 

variables are defined as suitable linear combinations so to make the transformation 

canonical together with the following change of coordinates on the actions : 

 

 

. 

 

Three–Body Resonance 

We consider the three–body Hamiltonian with perturbing function     and let be the 

frequency of motion. 

   
 

We assume that the frequency vector satisfies the resonance relation 
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. 

According to the theory described in the previous section we perform the canonical 

change of Variables 

 

The precession of the equinoxes 

An example of the application of the degenerate perturbation theory in Celestial 

Mechanics is provided by the computation of the precession of the equinoxes. 

We consider a triaxial rigid body moving in the gravitational field of a primary body. We 

introduce the following reference frames with common origin in the barycenter of the rigid 

body: is an inertial reference frame, 

 

 

 

 

   

 

   

is a body frame oriented along the direction of the principal axes of the ellipsoid, 

is the spin reference frame with the vertical axis along the direction of the angular 

momentum,  

Let be the Euler angles formed by the body and spin  frames, and let  (K, h, 0) be the Euler 

angles formed by the spin and inertial frames. The angle K is the obliquity (representing 

the angle between the spin and inertial vertical axes), while J is the non–principal rotation 

angle (representing the angle between the spin and body vertical axes). 

 

4. PLANETARY PROBLEMS 

The dynamics of the planetary problem composed by the Sun, Jupiter and Saturn is 

investigated. In the secular dynamics of the following model is studied: after the Jacobi’s 

reduction of the nodes, the 4–dimensional Hamiltonian is averaged over the fast angles and 

its series expansion is considered up to the second order in the masses. This procedure 

provides a Hamiltonian function with two degrees of freedom, describing the slow motion 

of the parameters characterizing the Keplerian approximation (i.e., the eccentricities and 

the arguments of perihelion). Afterwards, action–angle coordinates are introduced and a 

partial Birkhoff normalization is performed. Finally, a computer–assisted implementation 

of a KAM theorem yields the existence of two invariant tori bounding the secular motions 

of Jupiter and Saturn for the observed values of the parameters. 

The approach sketched above is extended in so to include the description of the fast 

variables, like the semi–major axes and the mean longitudes of the planets. Indeed, the 

preliminary average on the fast angles is now performed without eliminating the terms 

with degree greater or equal than two with respect to the fast actions. The canonical 

transformations involving the secular coordinates can be adapted to produce a good initial 

approximation of an invariant torus for the reduced Hamiltonian of the three–body 
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planetary problem. This is the starting point of the procedure for constructing the 

Kolmogorov’s normal form which is numerically shown to be convergent. In the same 

result of has been obtained for a fictitious planetary solar system composed by two planets 

with masses equal to 1/10 of those of Jupiter and Saturn. 

 

5. PERIODIC ORBITS 

 Construction of periodic orbits 

One of the most intriguing conjectures of Poincar´e concerns the pivotal role of the 

periodic orbits in the study of the dynamics; more precisely, he states that  given  a  

particular solution of Hamilton’s equations one can always find a periodic solution 

(possibly with very long period) such that the difference between the two solutions is small 

for an arbitrary long time. The literature on periodic orbits is extremely wide (see, e.g., [3], 

[7], [10], [14], [15] and references therein); here we present the construction of periodic 

orbits implementing a perturbative approach (see [20]) as shown by Poincar´e in [12]. We 

describe such method taking  as example  the  spin–orbit Hamiltonian  (23)  that we  write  

in  a  compact  form   as for a suitable function f = f(x, t); the corresponding Hamilton’s 

equations are  

 

 

 

6. FUTURE DIRECTIONS 

The end of the XX century has been greatly marked by astronomical discoveries, which 

changed the shape of the solar system as well as of the entourage of other stars.  In 

particular, the detection of many small bodies beyond the orbit of Neptune has moved 

forward the edge of the solar system and it has increased the number of its population. 

Hundreds objects have been observed to move in a ring beyond Neptune, thus forming the 

so–called Kuiper’s belt. Its components show a great variety of behaviors, like resonance 

clustering’s, regular orbits, scattered trajectories. Furthermore, far outside the solar 

system, the astronomical observations of extra solar planetary systems have opened new 

scenarios with a great variety of dynamical behaviors. In these contexts classical and 

resonant perturbation theories will deeply contribute to provide a fundamental insight of 

the dynamics and will play a prominent role in explaining the different configurations 

observed within the Kuiper’s belt as well as within extra solar planetary systems. 
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